高齢者が健康で自立した生活を過ごすためには、身体機能と認知機能を維持していくことが必須になる。フレイルは、加齢に伴う様々な機能変化や予備能力低下によって健康障害に対する脆弱性が亢進した状態と理解されており、適切な介入によって改善が期待出来る1)。フレイルの診断基準として、Friedらが身体機能の5つの要素に注目して提唱したCardiovascular Health Study Index(CHS基準)が広く知られているが2、3)、この基準には、精神・心理的要素(認知症、うつなど)や社会的要素(閉じこもり、孤立など)の項目は含まれていない。近年、フレイルは精神・心理的フレイルや社会的フレイルも含んだ概念として捉えられつつある4、5)。
骨格筋たんぱく質の恒常性を規定する2大要素は食事と運動である。食事で摂取したたんぱく質や他の栄養素由来のアミノ酸から、たんぱく質を合成する能力が体内にはあるが(同化作用)、必須アミノ酸は体内で合成することができないため必ず摂取する必要がある。飢餓時に肝臓で糖新生が行われる際には、筋たんぱく質が分解・利用される(異化作用)。食事や運動の有無に関わらず、筋ではたんぱく質の合成と分解が生じており、筋へのアミノ酸の供給は常に必要になる12)。食事によりインスリン分泌が促進されると、アミノ酸吸収とmTOR(mammalian Target Of Rapamycin)経路の活性化が起こり、たんぱく質合成が活性される9)。アミノ酸の中でも特に必須アミノ酸の一つであるロイシン摂取によるたんぱく質合成の活性化が報告されている13)。筋に対する機械的刺激はmTOR経路の活性化を介して、筋でのたんぱく質合成を促進する14)。
2010年にEWGSOP(European Working Group on Sarcopenia in Older People)はサルコペニアの定義と診断基準を発表した37)。日本人を含めたアジア人を対象にしたAWGS(Asia Working Group for Sarcopenia)によるサルコペニアの独自基準も報告されている38)。近年、EWGSOPとAWGSの基準はともに改定され、筋機能の評価を重視する考え方や、地域において早期発見に努めること、が強調されている39、40)。
本年度から高齢者のフレイル検診が始まり、地域の自治体や医師会によるフレイル対策が計画され、サルコペニアは認知症とともに最も注力すべき疾患となっている。また新型コロナウイルス感染症の流行に伴って、自宅への引きこもり、受診控え、ADL(Activity of Daily Living)の悪化、慢性疾患のコントロール悪化が懸念されている92)。筋研究の一層の進展とともに、積極的包括的な予防の取り組みがますます重要になる。
文献
1)荒井秀典: フレイルの意義. 日本老年医学会雑誌 2014; 51: 497-501.
2)Fried, LP, Tangen CM, Walston J, et al: Frailty in older adults: evidence for a phenotype. The Journals of Gerontology. Series A, Biological sciences and medical sciences 2001; 56: M146-156.doi:10.1093/gerona/56.3.m146.
3)Walston J, McBurnie MA, Newman A, et al: Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the cardiovascular health study. Archives of Internal Medicine 2002; 162: 2333-2341.doi:10.1001/archinte.162.20.2333.
5)Arai H, Kozaki K, Kuzuya M, et al: Chapter 2 frailty concepts. Geriatr Gerontol Int 2020: 20(1); 14-19.doi:10.1111/ggi.13831.
6)Ishikura K, Ra SG, Ohmori H: Exercise-induced changes in amino acid levels in skeletal muscle and plasma. The Journal of Physical Fitness and Sports Medicine 2013; 2: 301-310.doi:10.7600/jpfsm.2.301.
7)Dympna G, Heymsfield SB, Wang ZM: 12 Skeletal muscle markers. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance.
8)Timmons JA: Variability in training-induced skeletal muscle adaptation. Journal of Applied Physiology (Bethesda Md: 1985) 2011; 110: 846-853.doi:10.1152/japplphysiol.00934.2010.
9)Atherton PJ, Smith K: Muscle protein synthesis in response to nutrition and exercise. The Journal of Physiology 2012; 590: 1049-1057.doi:10.1113/jphysiol.2011.225003.
10)Kumar V, Atherton P, Smith K, et al: Human muscle protein synthesis and breakdown during and after exercise. Journal of Applied Physiology (Bethesda Md: 1985) 2009; 106: 2026-2039.doi:10.1152/japplphysiol.91481.2008.
11)Robinson MM, Turner SM, Hellerstein MK, et al: Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2011; 25: 3240-3249.doi:10.1096/fj.11-186437.
12)Wackerhage H, Rennie MJ: How nutrition and exercise maintain the human musculoskeletal mass. Journal of Anatomy 2006; 208: 451-458.doi:10.1111/j.1469-7580.2006.00544.x.
13)Komar B, Schwingshackl L, Hoffmann G: Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. The Journal of Nutrition, Health & Aging 2015; 19: 437-446.doi:10.1007/s12603-014-0559-4.
14)Nakai N, Kawano F, Ohira Y: Control of muscle protein synthesis in response to exercise and amino acids. The Journal of Physical Fitness and Sports Medicine 2012; 1: 297-305.doi:10.7600/jpfsm.1.297.
15)Bell RA, Al-Khalaf M, Megeney LA: The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skeletal Muscle 2016; 6: 16.doi:10.1186/s13395-016-0086-6.
16)Cleasby ME, Jamieson PM, Atherton PJ: Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. The Journal of Endocrinology 2016; 229: R67-81.doi:10.1530/joe-15-0533.
17)Umegaki H: Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig 2015; 6: 623-624.doi:10.1111/jdi.12365.
18)Tamura Y, Omura T, Toyoshima K, et al: Nutrition management in older adults with diabetes: importance of strategy shift on the prevention from metabolic syndrome to frailty. Nutrients 2020; 12(11): 3367.doi:10.3390/nu12113367.
19)Brooks SV: Current topics for teaching skeletal muscle physiology. Advances in Physiology Education 2003; 27: 171-182.doi:10.1152/advan.2003.27.4.171.
20)Abe T, Sakamaki M, Yasuda T, et al: Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. Journal of Sports Science & Medicine 2011; 10: 145-150.
21)Hughes VA, Frontera WR, Wood M, et al: Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. The Journals of Gerontology. Series A, Biological sciences and medical sciences 2001; 56: B209-217. doi:10.1093/gerona/56.5.b209.
22)Kasai T, Ishiguro N, Matsui Y, et al: Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese. Geriatr Gerontol Int 2015; 15: 700-706.doi:10.1111/ggi.12338.
23)Kozakai R, Ando F, Kim HY, et al: Sex-differences in age-related grip strength decline: A 10-year longitudinal study of community-living middle-aged and older Japanese. The Journal of Physical Fitness and Sports Medicine 2016; 5: 87-94.doi:10.7600/jpfsm.5.87.
24)Wilkinson DJ, Piasecki M, Atherton PJ: The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Research Reviews 2018; 47: 123-132.doi:10.1016/j.arr.2018.07.005.
25)Mitchell WK, Williams J, Atherton P, et al: Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology 2012; 3: 260.doi:10.3389/fphys.2012.00260.
26)Saltin B, Gollnick PD: Skeletal muscle adaptability: Significance for metabolism and performance. Comprehensive Physiology 1985; 555-631.doi:10.1002/ cphy.cp 100119
27)Simoneau JA, Bouchard C: Genetic determinism of fiber type proportion in human skeletal muscle. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 1995; 9: 1091-1095.doi:10.1096/fasebj.9.11.7649409.
29)Watanabe K, Holobar A, Kouzaki M, et al: Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age 2016; 38: 48.doi:10.1007/s11357-016-9915-0.
30)Roos MR, Rice CL, Vandervoort AA: Age-related changes in motor unit function. Muscle & Nerve 1997; 20: 679-690.doi:10.1002/(sici)1097-4598(199706)20:6<679::aid-mus4>3.0.co;2-5.
31)Miller AE, MacDougall JD, Tarnopolsky MA, et al: Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology 1993; 66: 254-262.doi:10.1007/bf00235103.
32)Lexell J: Human aging, muscle mass, and fiber type composition. The Journals of Gerontology. Series A, Biological sciences and medical sciences 1995; 50: 11-16. doi:10.1093/gerona/50a.special_issue.11.
33)Deschenes MR, Roby MA, Eason MK, et al: Remodeling of the neuromuscular junction precedes sarcopenia related alterations in myofibers. Experimental Gerontology 2010; 45: 389-393.doi:10.1016/j.exger.2010.03.007.
34)Marcus RL, Addison O, Kidde JP, et al: Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. The Journal of Nutrition, Health & Aging 2010; 14: 362-366. doi:10.1007/s12603-010-0081-2.
35)Stannard SR, Johnson NA: Insulin resistance and elevated triglyceride in muscle: More important for survival than "thrifty" genes? The Journal of Physiology 2004; 554: 595-607.doi:10.1113/jphysiol.2003.053926.
36)Liu L, Zhang Y, Chen N, et al: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. The Journal of Clinical Investigation 2007; 117: 1679-1689.doi:10.1172/jci30565.
37)Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al: Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age and Ageing 2010; 39: 412-423.doi:10.1093/ageing/afq034.
38)Chen LK, Liu LK, Woo J, et al: Sarcopenia in Asia: Consensus report of the asian working group for sarcopenia. Journal of the American Medical Directors Association 2014; 15: 95-101.doi:10.1016/j.jamda.2013.11.025.
39)Cruz-Jentoft AJ, Bahat G, Bauer J, et al: Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing 2019; 48: 16-31.doi:10.1093/ageing/afy169.
40)Chen LK, Woo J, Assantachai P, et al: Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. Journal of the American Medical Directors Association 2020; 21: 300-307.e302.doi:10.1016/j.jamda.2019.12.012.
41)Vellas B, Pahor M, Manini T, et al: Designing pharmaceutical trials for sarcopenia in frail older adults: EU/US task force recommendations. The Journal of Nutrition, Health & Aging 2013; 17: 612-618.doi:10.1007/s12603-013-0362-7.
42)Ida S, Kaneko R, Murata K: SARC-F for Screening of sarcopenia among older adults: A meta-analysis of screening test accuracy. Journal of the American Medical Directors Association 2018; 9: 685-689.doi:10.1016/j.jamda.2018.04.001.
43)Kawakami R, Murakami H, Sanada K, et al: Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int 2015; 15: 969-976.doi:10.1111/ggi.12377.
44)Bohannon RW: Grip strength: An indispensable biomarker for older adults. Clinical Interventions in Aging 2019; 14: 1681-1691.doi:10.2147/cia.s194543.
45)Bohannon RW: Are hand-grip and knee extension strength reflective of a common construct? Perceptual and Motor Skills 2012; 114: 514-518.doi:10.2466/03.26.pms.114.2.514-518.
46)Hamasaki H, Kawashima Y, Katsuyama H, et al: Association of handgrip strength with hospitalization, cardiovascular events, and mortality in Japanese patients with type 2 diabetes. Scientific Reports 2017; 7: 7041.doi:10.1038/s41598-017-07438-8.
47)Kim M, Shinkai S: Prevalence of muscle weakness based on different diagnostic criteria in community-dwelling older adults: A comparison of grip strength dynamometers. Geriatr Gerontol Int 2017; 17: 2089-2095.doi:10.1111/ggi.13027.
48)Studenski S, Perera S, Patel K, et al: Gait speed and survival in older adults. JAMA 2011; 305: 50-58.doi:10.1001/jama.2010.1923.
49)Nijholt W, Scafoglieri A, Jager-Wittenaar H, et al: The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 702-712.doi:10.1002/jcsm.12210.
50)Yamada M, Kimura Y, Ishiyama D, et al: Differential characteristics of skeletal muscle in community-dwelling older adults. Journal of the American Medical Directors Association 2017; 18: 807.e809-807.e816.doi:10.1016/j.jamda.2017.05.011.
51)Casati M, Costa AS, Capitanio D, et al: The biological foundations of sarcopenia: Established and promising markers. Frontiers in Medicine 2019; 6: 184. doi:10.3389/fmed.2019.00184.
52)Okamura T, Miki A, Hashimoto Y, et al: Shortage of energy intake rather than protein intake is associated with sarcopenia in elderly patients with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort. Journal of Diabetes 2019; 11: 477-483.doi:10.1111/1753-0407.12874.
53)Omura T, Tamura Y, Yamaoka T, et al: Assessing the association between optimal energy intake and all-cause mortality in older patients with diabetes mellitus using the Japanese elderly diabetes intervention trial. Geriatr Gerontol Int 2020; 20: 59-65. doi:10.1111/ggi.13820.
54)Henning W: Molecular exercise physiology: An introduction. Routledge 2014.
55)Rennie MJ: Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Applied Physiology, Nutrition, and Metabolism 2009; 34: 377-381. doi:10.1139/h09-012.
56)Breen L, Phillips SM: Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing. Nutrition & Metabolism 2011; 8: 68.doi:10.1186/1743-7075-8-68.
57)Deutz NE, Bauer JM, Barazzoni R, et al: Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clinical Nutrition 2014; 33: 929-936.doi:10.1016/j.clnu.2014.04.007.
58)Rahi B, Morais JA, Gaudreau P, et al: Energy and protein intakes and their association with a decline in functional capacity among diabetic older adults from the NuAge cohort. European Journal of Nutrition 2016; 55: 1729-1739.doi:10.1007/s00394-015-0991-1.
59)Beasley JM, Katz R, Shlipak M, et al: Dietary protein intake and change in estimated GFR in the cardiovascular health study. Nutrition 2014; 30: 794-799.doi:10.1016/j.nut.2013.12.006.
60)Dunkler D, Dehghan M, Teo KK, et al: Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Internal Medicine 2013; 173: 1682-1692.doi:10.1001/jamainternmed.2013.9051.
61)Watanabe D, Machida S, Matsumoto N, et al: Age modifies the association of dietary protein intake with all-cause mortality in patients with chronic kidney disease. Nutrients 2018; 10.doi:10.3390/nu10111744.
63)Levine ME, Suarez JA, Brandhorst S, et al: Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metabolism 2014; 19: 407-417.doi:10.1016/j.cmet.2014.02.006.
64)Smeuninx B, Greig CA, Breen L: Amount, source and pattern of dietary protein intake across the adult lifespan: A cross-sectional study. Frontiers in Nutrition 2020; 7: 25.doi:10.3389/fnut.2020.00025.
65)Ten Haaf DSM, Nuijten MAH, Maessen MFH, et al: Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: a systematic review and meta-analysis. The American Journal of Clinical Nutrition 2018; 108: 1043-1059.doi:10.1093/ajcn/nqy192.
66)Fujii N, Hayashi T, Hirshman MF, et al: Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochemical and Biophysical Research Communications 2000; 273: 1150-1155.doi:10.1006/bbrc.2000.3073.
67)Yoo SZ, No MH, Heo JW, et al: Role of exercise in age-related sarcopenia. Journal of Exercise Rehabilitation 2018; 14: 551-558.doi:10.12965/jer.1836268.134.
68)Johnston AP, De Lisio M, Parise G: Resistance training, sarcopenia, and the mitochondrial theory of aging. Applied Physiology, Nutrition, and Metabolism 2008; 33: 191-199.doi:10.1139/h07-141.
69)Heo JW, No MH, Min DH, et al: Aging-induced Sarcopenia and Exercise. J Korean Acad Kinesiol 2017; 19: 43-59.doi:10.15758/jkak.2017.19.2.43.
70)Taaffe DR, Henwood TR, Nalls MA, et al: Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology 2009; 55: 217-223.doi:10.1159/000182084.
71)Borde R, Hortobagyi T, Granacher U: Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Medicine 2015; 45: 1693-1720.doi:10.1007/s40279-015-0385-9.
72)Peterson MD, Rhea MR, Sen A: Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Research Reviews 2010; 9: 226-237.doi:10.1016/j.arr.2010.03.004.
73)Haran PH, Rivas DA, Fielding RA: Role and potential mechanisms of anabolic resistance in sarcopenia. Journal of Cachexia, Sarcopenia and Muscle 2012; 3: 157-162.doi:10.1007/s13539-012-0068-4.
74)Yamada M, Kimura Y, Ishiyama D, et al: Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr Gerontol Int 2019; 19: 429-437.doi:10.1111/ggi.13643.
75)Yoshimura Y, Wakabayashi H, Yamada M, et al: Interventions for treating sarcopenia: A systematic review and meta-analysis of randomized controlled studies. Journal of the American Medical Directors Association 2017; 18: 553.e551-553.e516.doi:10.1016/j.jamda.2017.03.019.
76)Law TD, Clark LA, Clark BC: Resistance exercise to prevent and manage sarcopenia and dynapenia. Annual Review of Gerontology & Geriatrics 2016; 36: 205-228.doi:10.1891/0198-8794.36.205.
77)Zech A, Drey M, Freiberger E, et al: Residual effects of muscle strength and muscle power training and detraining on physical function in community-dwelling prefrail older adults: a randomized controlled trial. BMC Geriatrics 2012; 12: 68.doi:10.1186/1471-2318-12-68.
78)Yasuda T, Fukumura K, Sato Y,et al: Effects of detraining after blood flow-restricted low-intensity training on muscle size and strength in older adults. Aging Clinical and Experimental Research 2014; 26: 561-564.doi:10.1007/s40520-014-0208-0.
80)Roy TA, Blackman MR, Harman SM, et al: Interrelationships of serum testosterone and free testosterone index with FFM and strength in aging men. American journal of physiology. Endocrinology and Metabolism 2002; 283: E284-294.doi:10.1152/ajpendo.00334.2001.
81)Ottenbacher KJ, Ottenbacher ME, Ottenbacher AJ, et al: Androgen treatment and muscle strength in elderly men: A meta-analysis. Journal of the American Geriatrics Society 2006; 54: 1666-1673.doi:10.1111/j.1532-5415.2006.00938.x.
82)Chen Y, Zajac JD, MacLean HE: Androgen regulation of satellite cell function. The Journal of Endocrinology 2005; 186: 21-31.doi:10.1677/joe.1.05976.
83)Morley JE, Kaiser FE, Perry HM, et al: Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism: Clinical and Experimental 1997; 46: 410-413.doi:10.1016/s0026-0495(97)90057-3.
84)Morley JE: Growth hormone: fountain of youth or death hormone? Journal of the American Geriatrics Society 1999; 47: 1475-1476.doi:10.1111/j.1532-5415.1999.tb01572.x.
85)Musaro A, McCullagh KJ, Naya FJ, et al: IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400: 581-585.doi:10.1038/23060.
86)Lee CG, Boyko EJ, Barrett-Connor E, et al: Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes care 2011; 34: 2381-2386.doi:10.2337/dc11-1032.
87)Sumantri S, Setiati S, Purnamasari D, et al: Relationship between metformin and frailty syndrome in elderly people with type 2 diabetes. Acta Medica Indonesiana 2014; 46: 183-188.
88)Laksmi PW, Setiati S, Tamin TZ, et al: Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: A double blind randomized controlled trial among non-diabetic pre-frail elderly patients. Acta Medica Indonesiana 2017; 49: 118-127.
89)Wang CP, Lorenzo C, Espinoza SE: Frailty attenuates the impact of metformin on reducing mortality in older adults with type 2 diabetes. Journal of Endocrinology, Diabetes & Obesity 2014; 2.
90)Johansson KS, Bronden A, Knop FK, et al: Clinical pharmacology of imeglimin for the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy 2020; 21(8):1-12. doi:10.1080/14656566.2020.1729123.
91)Tepper S, Alter Sivashensky A, Rivkah Shahar D, et al: The assocation between mediterranean diet and the risk of falls and physical function indices in older type 2 diabetic people varies by age. Nutrients 2018; 10.doi:10.3390/nu10060767.
92)Omura T, Araki A, Shigemoto K, et al: Geriatric practice during and after the COVID-19 pandemic. Geriatr Gerontol Int 2020; 20: 735-737.doi:10.1111/ggi.13958.